
11

Performance OpenGL
Platform Independent Techniques

or
“A bunch of good habits for every OpenGL

programmer”

Performance OpenGL
Platform Independent Techniques

or
“A bunch of good habits for every OpenGL

programmer”

Dave Shreiner
Alan Commike
Brad Grantham

Bob Kuehne

IntroductionIntroduction

22

ScheduleSchedule

1:45 Introduction
2:00 Bottlenecks
2:45 VP/FP Operation
3:15 Break
3:30 VP/FP Performance
4:00 Validation
4:30 Geometry Storage
5:20 Conclusion / Q&A

Dave Shreiner
Dave Shreiner
Alan Commike

Bob Kuehne
Dave Shreiner
Brad Grantham
All

What You’ll See
Today…
What You’ll See
Today…

–An in-depth look at the OpenGL pipeline
from a performance perspective

–Techniques for determining where
OpenGL performance bottlenecks are
limiting your application’s performance

–A look at the latest OpenGL mechanisms
and how you might use them to
increase your application’s performance

–A bunch of simple, good habits for
OpenGL applications

33

Performance Tuning
Assumptions
Performance Tuning
Assumptions

–You’re trying to tune an interactive
OpenGL application

–There’s an established metric for
estimating the application’s
performance
• Consistent frames/second
• Number of pixels or primitives to be

rendered per frame

–You can change the application’s source
code

Quick Review of
Benchmarking
Quick Review of
Benchmarking

• Use glFinish() when timing rendering
–remember to take it out of production

code!

Time start = getTime();
drawScene();
glFinish();
Time elasped = getTime() – start;

44

A Brief OpenGL UpdateA Brief OpenGL Update

• OpenGL 1.5 was announced at
SIGGRAPH!

• Major Features
–vertex buffer objects
–occlusion query
–shadow functions
–point sprites

• OpenGL Shading language approved
as an extension

A Brief OpenGL Update
(cont.)
A Brief OpenGL Update
(cont.)

• OpenGL 1.4 added:
–multi-draw vertex arrays
–window-coordinate raster position
–additional blending functionality
–secondary color
– level-of-detail control for mipmapped

textures
–mirrored-repeat wrap modes for

textures

55

A Brief OpenGL Update
(cont.)
A Brief OpenGL Update
(cont.)

• Vertex and Fragment Program
extensions approved as extensions
to 1.4

• OpenGL 1.3 added:
–multiple texturing
–multi-sampled visuals
– transposed matrix entry points
–cube mapping

Some Thoughts on
OpenGL’s Evolution
Some Thoughts on
OpenGL’s Evolution

• OpenGL 1.3’s multi-texture capability
marked a paradigm shift
–de-emphasized multi-pass algorithms
–began a sequence of rapid evolution

• register combiners
• vertex programs
• fragment programs
• The OpenGL Shading Language

66

Some Thoughts on
OpenGL’s Evolution (cont.)
Some Thoughts on
OpenGL’s Evolution (cont.)

• Advanced data placement extensions
–compiled vertex arrays
–vertex array objects (extensions)
–vertex buffer objects (extension ² core)

Conclusion:
–OpenGL’s evolution make understanding

the pipeline and state management
even more important

Performance Bottleneck
Determination
Performance Bottleneck
Determination

77

Eliminating OpenGL
Errors
Eliminating OpenGL
Errors

• Asynchronous Error Reporting
–OpenGL doesn’t tell you when

something goes wrong
• Calls will silently mark an error and

glColor3fv
• Need to use glGetError() to determine if

something went wrong

“We should forget about small efficiencies, about 97%
of the time. Premature optimization is the root of all
evil” – Donald Knuth

“We should forget about small efficiencies, about 97%
of the time. Premature optimization is the root of all
evil” – Donald Knuth

Checking for ErrorsChecking for Errors

•Check Early and often in Application
Development
–Only first error* is retained

• Additional errors are discarded until error
flag is cleared by calling glGetError()

–Erroneous OpenGL function skipped

88

Checking a single
command
Checking a single
command
• Simple Macro

– Some limitations on where the macro can be used
• can’t use inside of glBegin() / glEnd() pair

#define CHECK_OPENGL_ERROR(cmd) \
cmd; \
{ GLenum error; \
while ((error = glGetError()) != GL_NO_ERROR) { \

printf("[%s:%d] '%s' failed with error %s\n", \
__FILE__, __LINE__, #cmd, \
gluErrorString(error)); \

}

Checking More
Thoroughly
Checking More
Thoroughly

• Modified gl.h checks almost every
situation

– Script for re-writing gl.h available from web
site

#define glBegin(mode) \
if (__glDebug_InBegin) { \
printf("[%s:%d] glBegin(%s) called between” \

“glBegin()/glEnd() pair\n", \
__FILE__, __LINE__, #mode); \

} else { \
__glDebug_InBegin = GL_TRUE; \
glBegin(mode); \

}

99

The OpenGL Pipeline
(The Macroscopic View)
The OpenGL Pipeline
(The Macroscopic View)

Ap
pl

ic
at

io
n

Tr
an

sf
or

m
at

io
n

Pi
pe

lin
e

Ra
st

er
iz

at
io

n

Fr
am

eb
uf

fe
r

Performance
Bottlenecks
Performance
Bottlenecks

• Bottlenecks are the performance
limiting part of the application
–Application bottleneck

• Application may not pass data fast enough
to the OpenGL pipeline

–Transform-limited bottleneck
• OpenGL may not be able to process vertex

transformations fast enough

1010

Performance
Bottlenecks (cont.)
Performance
Bottlenecks (cont.)

–Fill-limited bottleneck
• OpenGL may not be able to rasterize

primitives fast enough

There Will Always Be A
Bottleneck
There Will Always Be A
Bottleneck
• Some portion of the application will always

be the limiting factor to performance
– If the application performs to expectations,

then the bottleneck isn’t a problem
– Otherwise, need to be able to identify which

part of the application is the bottleneck
– We’ll work backwards through the OpenGL

pipeline in resolving bottlenecks
– Sometimes you can take advantage of

bottlenecks in a positive way
• enhance quality of another pipeline stage that isn’t

the bottleneck

1111

Fill-limited BottlenecksFill-limited Bottlenecks

• System cannot fill all the pixels
required in the allotted time
–Easiest bottleneck to test
–Reduce number of pixels application

must fill
• Make the viewport smaller

Reducing Fill-limited
Bottlenecks
Reducing Fill-limited
Bottlenecks

• The Easy Fixes
–Make the viewport smaller

• This may not be an acceptable solution, but
it’s easy

–Reduce the frame-rate

frame
pixels

second
frames

second
pixels

M3.13
06
M800

≈frame
pixels

second
frames

second
pixels

M7.10
75

M800
≈

1212

A Closer Look at
OpenGL’s Rasterization
Pipeline

A Closer Look at
OpenGL’s Rasterization
Pipeline

Texture
Mapping
Engine

To
Fragment Tests

Point
Rasterization

Line
Rasterization

Triangle
Rasterization

Pixel
Rectangle

Rasterization

Bitmap
Rasterization

Fog
Engine

Color Sum
(Sep. Specular

Color)

Reducing Fill-limited
Bottlenecks (cont.)
Reducing Fill-limited
Bottlenecks (cont.)

• Rasterization Pipeline
– Cull back facing

polygons
• Does require all

primitives have same
facediness

– Use a simpler texture
filter
• Particularly on objects that occupy small screen area

– far from the viewer

– Use per-vertex fog, as compared to per-pixel

Texture
Mapping
Engine

To
Fragment Tests

Point
Rasterization

Line
Rasterization

Triangle
Rasterization

Pixel
Rectangle

Rasterization

Bitmap
Rasterization

Fog
Engine

Color Sum
(Sep.

Specular
Color)

1313

Texture-mapping
Considerations
Texture-mapping
Considerations

• Use Texture Objects
–Allows OpenGL to do texture memory

management
• Loads texture into texture memory when

appropriate
• Only convert data once

–Provides queries for checking if a
texture is resident
• Load all textures, and verify they all fit

simultaneously

Texture-mapping
Considerations (cont.)
Texture-mapping
Considerations (cont.)

• Texture Objects (cont.)
–Assign priorities to textures

• Provides hints to texture-memory manager
on which textures are most important

–Can be shared between OpenGL
contexts
• Allows one thread to load textures; other

thread to render using them

–Requires OpenGL 1.1

1414

Texture-mapping
Considerations (cont.)
Texture-mapping
Considerations (cont.)

• Sub-loading Textures
–Only update a portion of a texture

• Reduces bandwidth for downloading
textures

• Usually requires modifying texture-
coordinate matrix

Texture-mapping
Considerations (cont.)
Texture-mapping
Considerations (cont.)

• Know what sizes your textures need
to be
–What sizes of mipmaps will you need?
–OpenGL 1.2 introduces texture level-of-

detail
• Ability to have fine grained control over

mipmap stack
– Only load a subset of mipmaps
– Control which mipmaps are used

1515

Internal Texture FormatsInternal Texture Formats

• OpenGL provides
numerous formats
for storing textures
– tradeoff visual

quality vs. speed
vs. residency

• Compressed
textures look like a
good option
– make sure they

meet you quality
needs

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

G
L_R

3_G
3_B

2

G
L_A

LP
H

A
8

G
L_A

LP
H

A
16

G
L_LU

M
IN

A
N

C
E

8

G
L_LU

M
IN

A
N

C
E

16

G
L_LU

M
IN

A
N

C
E

6_A
LP

H
A

2

G
L_LU

M
IN

A
N

C
E

12_A
LP

H
A

4

G
L_LU

M
IN

A
N

C
E

16_A
LP

H
A

16

G
L_IN

T
E

N
S

IT
Y

4

G
L_IN

T
E

N
S

IT
Y

12

G
L_R

G
B

4

G
L_R

G
B

8

G
L_R

G
B

12

G
L_R

G
B

A
2

G
L_R

G
B

5_A
1

G
L_R

G
B

10_A
2

G
L_R

G
B

A
16

G
L_C

O
M

P
R

E
S

S
E

D
_LU

M
IN

A
N

C
E

G
L_C

O
M

P
R

E
S

S
E

D
_IN

TE
N

S
ITY

G
L_C

O
M

P
R

E
S

S
E

D
_R

G
B

A

Percentage of Peak Texture Fill by Internal Texture Format

A Closer Look at
OpenGL’s Rasterization
Pipeline (cont.)

A Closer Look at
OpenGL’s Rasterization
Pipeline (cont.)

Pixel
Ownership

Test

Scissor
Test

Alpha
Test

Stencil
Test

Depth
Buffer
Test

Blending Dithering Logical
Operations

Fr
am

eb
uf

fe
r

Fragments
(from previous

stages)

1616

Reducing Fill-limited
Bottlenecks (cont.)
Reducing Fill-limited
Bottlenecks (cont.)

• Fragment Pipeline
–Do less work per

pixel
• Disable dithering
• Depth-sort primitives

to reduce depth testing
• Use alpha test to reject transparent

fragments
– saves doing a pixel read-back from the

framebuffer in the blending phase

Pixel
Ownership

Test

Scissor
Test

Alpha
Test

Stencil
Test

Depth
Buffer
Test

Blending Dithering Logical
Operations

Transform-limited
Bottlenecks
Transform-limited
Bottlenecks

• System cannot process all the
vertices required in the allotted time
–If application doesn’t speed up in fill-

limited test, it’s most likely transform-
limited

–Additional tests include
• Disable lighting
• Disable texture coordinate generation

1717

A Closer Look at
OpenGL’s Transform
Pipeline

A Closer Look at
OpenGL’s Transform
Pipeline

Texture
Coordinate
Generation

Vertex
Coordinates

Lighting
Normals

Texture
Coordinates

Color

ModelView
Transform

Projection
TransformLighting Clipping

Texture
Coordinate
Transform

Vertex
Attributes

Reducing Transform-
limited Bottlenecks
Reducing Transform-
limited Bottlenecks

• Do less work per-vertex
–Tune lighting
–Use “typed” OpenGL matrices
–Use explicit texture coordinates
–Simulate features in texturing

• lighting

–Use triangle strips
–Use indexed primitives on newest

hardware

1818

Lighting ConsiderationsLighting Considerations

–Use infinite (directional) lights
• Less computation compared to local (point)

lights
• Don’t use GL_LIGHTMODEL_LOCAL_VIEWER

–Use fewer lights
• Not all lights may be hardware accelerated

Lighting Considerations
(cont.)
Lighting Considerations
(cont.)

–Use a texture-based lighting scheme
• Only helps if you’re not fill-limited

1919

Reducing Transform-limited
Bottlenecks (cont.)
Reducing Transform-limited
Bottlenecks (cont.)

• Matrix Adjustments
–Use “typed” OpenGL matrix calls

• Some implementations track matrix type to
reduce matrix-vector multiplication
operations

glLoadMatrix*()
glMultMatrix*()
glTransposeLoadMarix*()
glTransposeMultMatrix*()

glRotate*()
glScale*()
glTranslate*()
glLoadIdentity()

“Untyped”“Typed”

A Closer Look at
OpenGL’s Pixel Pipeline
A Closer Look at
OpenGL’s Pixel Pipeline

Pixel Scale
&

Bias
Clamp

Pixel
Rectangle

Pixel
Unpacking

Type
Conversion

Framebuffer Texture
Memory

Pixel Map

2020

Working with Pixel
Rectangles
Working with Pixel
Rectangles

• Texture downloads and Blts
–OpenGL supports many formats for

storing pixel data
• Signed and unsigned types, floating point

–Type conversions from storage type to
framebuffer / texture memory format
occur automatically

Pixel Data ConversionsPixel Data Conversions

0

5

10

15

20

25

30

Machine 1 Machine 2 Machine 3

GL_BYTE GL_UNSIGNED_BYTE GL_SHORT GL_UNSIGNED_SHORT

GL_INT GL_UNSIGNED_INT GL_FLOAT

2121

Pixel Data Conversions
(cont.)
Pixel Data Conversions
(cont.)

0

0.5

1

1.5

2

2.5

Machine 1 Machine 2 Machine 3

GL_UNSIGNED_SHORT_4_4_4_ GL_UNSIGNED_SHORT_4_4_4_4_REV GL_UNSIGNED_SHORT_5_5_5_1

GL_UNSIGNED_SHORT_1_5_5_5_REV GL_UNSIGNED_INT_8_8_8_8 GL_UNSIGNED_INT_8_8_8_8_REV

GL_UNSIGNED_INT_10_10_10_2 GL_UNSIGNED_INT_2_10_10_10_REV

Pixel Data Conversions
(cont.)
Pixel Data Conversions
(cont.)

• Observations
–Signed data types probably aren’t

optimized
• OpenGL clamps colors to [0, 1]

–Match pixel format to window’s pixel
format for blts
• Usually involves using packed pixel formats
• No significant difference for rendering speed

for texture’s internal format

2222

What If Those Options
Aren’t Viable?
What If Those Options
Aren’t Viable?

–Use more or faster hardware
–Utilize the “extra time” in other parts of

the application
• Transform pipeline

– tessellate objects for smoother appearance

– use better lighting

• Application
– more accurate simulation
– better physics

OpenGL Vertex and Fragment
Program Operation
OpenGL Vertex and Fragment
Program Operation

2323

IntroductionIntroduction

• Fixed-function OpenGL hardware still
exists but most new & future
hardware exposes programmability.

• The old model was a box with lots of
knobs.

• The new model is a box with many
fewer knobs and two programs.

Programmable Graphics Programmable Graphics

• Two types of operations, per-vertex,
per-fragment

• ARB extensions to core OpenGL
• Low-level assembly-style code
• Common set of base instructions,

some specific fragment instructions

2424

Review: Fixed-Function
Transform Pipeline
Review: Fixed-Function
Transform Pipeline

Texture
Coordinate
Generation

Vertex
Coordinates

Lighting
Normals

Texture
Coordinates

Color

ModelView
Transform

Projection
TransformLighting Clipping

Texture
Coordinate
Transform

Programmable
Transformation Pipeline
Programmable
Transformation Pipeline

Texture
Coordinate
Generation

Vertex
Coordinates

Lighting
Normals

Texture
Coordinates

Color

ModelView
Transform

Projection
TransformLighting Clipping

Texture
Coordinate
Transform

Vertex
Program

Vertex
Attributes

2525

Programmable Vertex
Processing
Programmable Vertex
Processing

• Hardware has moved from fixed
function pipeline programmable
pipeline

• ARB_vertex_program provides a
mechanism to replace OpenGL
Transform, Lighting, Texture
Coordinate Generation with user
defined mechanism

What Can You Do?What Can You Do?

• Complete control of xform and lighting
• Complete control of tex coord generation
• Operations all hardware accelerated
• Custom Lighting Equations
• Custom Transformations
• Offload compute to the Vertex Processor
• Lots of new cool effects...

2626

You Win Some,
You Lose Some
You Win Some,
You Lose Some

Win:
A programmable Vertex Pipeline
gives you control! No need to wait
for new OpenGL extensions to try out
that Cool New Algorithm™!

Lose:
You need to implement all fixed
function xform, light, tex coord
generation

Functionality You Need
To Implement
Functionality You Need
To Implement
glEnable(GL_VERTEX_PROGRAM_ARB) turns off:
• Modelview and projection vertex transformations
• Vertex weighting/blending
• Normal transformation, rescaling, normalization
• Color material
• Per-vertex lighting
• Texture coordinate generation and texture matrix

transformations
• Per-vertex point size and fog coordinate

computations
• User-clip planes

2727

Functionality That’s Not
Replaced
Functionality That’s Not
Replaced

• Evaluators
• Clipping to the view frustum
• Perspective divide
• Viewport transformation
• Depth range transformation
• Front and back color selection (for two-

sided)
• Clamping of primary and secondary colors

to [0,1]
• Primitive assembly, setup, rasterization

Short intro to
ARB_vertex_program
Short intro to
ARB_vertex_program

• A Vertex Program is an assembly-
language like set of 27 instructions

• Stored in an external file or internally
as character array

• Parsed and compiled for the target
hardware

• Managed like texture objects -
Vertex Programs are bound and
hardware ensures residency

2828

Structure of a Vertex
Program
Structure of a Vertex
Program

!!ARBvp1.0
Define Attributes # Vertex State
Define Parameters # OGL State,

Constants
Define Temporaries
Define Address Registers
Instructions
Set Results
END

!!ARBvp1.0
ATTRIB pos = vertex.position;
PARAM l0Dir = {state.light[0].position};
TEMP eyeNormal;

.

.

.
DP3 eyeNormal.x, mvinv[0], normal;
.
.
.
MOV result.color, color;
END

Vertex Program
Parameters
Vertex Program
Parameters

• OpenGL State (lighting, materials,
matrices, texture coords)

• Need to enable state in OpenGL to
ensure vertex data is set

• Used to declare program constants

PARAM ambient_l0 = state.light[0].ambient;
PARAM highLightColor = { 0.2, 0.5, 0.2, 1.0 };

2929

Vertex Program
Attributes
Vertex Program
Attributes

• State associated with a Vertex
• Read-only

vertex.position
vertex.weight
vertex.weight[n]
vertex.color
vertex.color.primary
vertex.color.secondary
vertex.fogcoord
vertex.texcoord
vertex.texcoord[n]
vertex.matrixindex
vertex.matrixindex[n]
vertex.attrib[n]

Vertex Program
Attributes
Vertex Program
Attributes

• Attributes are per vertex data:
position, normal, color, etc.

• Generic attributes can be used for
application defined use: pressure,
velocity, softness, etc.

• Either traditional or generic, not both

ATTRIB pressure = vertex.attrib[12];

3030

Vertex Program
Temporaries
Vertex Program
Temporaries

• Temporaries must be declared
• Some programs may compile without

declaring temporaries, but the
results will not be portable!

TEMP tmp;

Vertex Program
Instructions
Vertex Program
Instructions

• Wide assortment of instructions from
simple add/multiple, to specialized
lighting instructions

• No branching or looping
• Loops can be unrolled, but watch out

for exceeding the max number of
instructions

3131

Vertex Program
Instructions
Vertex Program
Instructions
ABS - absolute value
ADD - add
ARL - address register load
DP3 - 3-component dot product
DP4 - 4-component dot product
DPH - homogeneous dot product
DST - distance vector
EX2 - exponential base 2
EXP - exponential base 2 (est)
FLR - floor
FRC - fraction
LG2 - logarithm base 2
LIT - compute light

coefficients
LOG - logorithm base 2
MAD - multiply and add

MAX - maximum
MIN - minimum
MOV - move
MUL - multiply
POW - exponentiate
MUL - multiply
POW - exponentiate
RCP - reciprocal
RSQ - reciprocal square root
SGE - set on greater than or

equal
SIN - sine with reduction to
SLT - set on less than
SUB - subtract
SWZ - extended swizzle
XPD - cross product

Vertex Program ResultsVertex Program Results

• Results must be explicitly written
• Values written are interpolated across a

primitive and accessible as a fragment
later

• Results set in:
result.color.back.primary
result.color.back.secondary
result.fogcoord
result.pointsize
result.texcoord
result.texcoord[n]

result.position
result.color
result.color.primary
result.color.secondary
result.color.front.primary
result.color.front.secondary
result.color.back

3232

Review: Fixed-Function
Rasterization Pipeline
Review: Fixed-Function
Rasterization Pipeline

Texture
Mapping
Engine

Rasterization
(yielding a
Fragment)

Fog
Engine

Color Sum
(Sep. Spec

Color)

Pixel
Ownership

Test

Scissor
Test

Alpha
Test

Stencil
Test

Depth
Buffer
Test

Blending Dithering
Logical

Operations Framebuffer

Programmable
Rasterization Pipeline
Programmable
Rasterization Pipeline

Texture
Mapping
Engine

Rasterization
(yielding a
Fragment)

Fog
Engine

Color Sum
(Sep. Spec

Color)

Pixel
Ownership

Test

Scissor
Test

Alpha
Test

Stencil
Test

Depth
Buffer
Test

Blending Dithering
Logical

Operations Framebuffer

Fragment Program

3333

Fragment ProgramsFragment Programs

• Similar to Vertex Programs, assembly-like
instructions that let you control fragment
generation

• Replaces fixed function Texture Blend,
Color Sum, and Fog on a per fragment
basis

• Per pixel tests are still part of the Fixed
Function pipeline

• Same bind/compilation semantics as
vertex program

Structure of a Fragment
Program
Structure of a Fragment
Program

!!ARBfp1.0
Define Attributes # Fragment State
Define Parameters # OGL State,

Constants
Define Temporaries
Instructions
Set Results
END

!!ARBfp1.0
ATTRIB vnormal = fragment.texcoord[0];
PARAM l0Dir = {state.light[0].position};
TEMP eyeNormal, fragcolor;

.

.

.
DP3 eyeNormal.x, mvinv[0], vnormal;
.
.
.
MOV result.color, fragcolor;
END

3434

Fragment Program
Attributes
Fragment Program
Attributes

• State associated with a fragment
• Read-only

fragment.color
fragment.color.primary
fragment.color.secondary
fragment.texcoord
fragment.texcoord[n]
fragment.fogcoord
fragment.position

Fragment Program
Attributes
Fragment Program
Attributes

• Attributes are aliases for fragment
program state.

• You need to know what each
attribute represents, there is no
compiler to yell at you

ATTRIB grouchyness = fragment.texcoord[3];

3535

Fragment Program
Parameters
Fragment Program
Parameters

• OpenGL State (lighting, materials,
matrices, texture)

• Need to enable state in OpenGL to
ensure fragment state is updated

• Used to declare program constants

PARAM ambient_l0 = state.light[0].ambient;
PARAM highLightColor = { 0.2, 0.5, 0.2, 1.0 };

Fragment Program
Texturing
Fragment Program
Texturing

• Texture coordinates are part of the
fragment state

• Coordinates are interpolated from
per vertex values to per fragment
values

• Coordinates are only updated if
OpenGL texturing is enabled

3636

Fragment Program
Texturing
Fragment Program
Texturing

• Texture instructions fetch texels
based on filtering mode set in OGL
texture parameters.

• Fragment program has control over
texture environment (aka blending):
modulate, decal, add, etc.

Decal texturing environment
TEX result.color, tex_coord, texture, 2D;

Fragment Program
Operations
Fragment Program
Operations
• 29 ALU type operations (mul, dp3,
lrp, cos, min, etc.)

• 3 Texturing operations (tex, txp,
txb)

• 1 operation not like the others (kil)
• two outputs: fragment color and

fragment depth (not req)
• no branching or looping (can be

simulated)

3737

Fragment Program
Instructions
Fragment Program
Instructions

• Branches can be simulated with
conditional instructions

• SGE and SLT compare two vectors
• CMP will do conditional moves

if (diffuse_color > 0.5)
tmp = dark_color;

else
tmp = light_color;

SGE tmp, diffuse_color, point_five;
CMP tmp, dark_color, light_color;

ABS - absolute value
ADD - add
CMP - compare
COS - cosine with reduction
DP3 - 3-component dot product
DP4 - 4-component dot product
DPH - homogeneous dot product
DST - distance vector
EX2 - exponential base 2
FLR - floor
FRC - fraction
KIL - kill fragment
LG2 - logarithm base 2
LIT - compute light coefficients
LRP - linear interpolation
MAD - multiply and add
MAX - maximum

MIN - minimum
MOV - move
MUL - multiply
POW - exponentiate
MUL - multiply
POW - exponentiate
RCP - reciprocal
RSQ - reciprocal square root
SCS - sine/cosine without reduction
SGE - set on greater than or equal
SIN - sine with reduction
SLT - set on less than
SUB - subtract
SWZ - extended swizzle
TEX - texture sample
TXB - texture sample with bias
TXP - texture sample with projection
XPD - cross product

Fragment Program
Instructions
Fragment Program
Instructions

3838

The KIL instructionThe KIL instruction

• The KIL instruction will kill a
fragment causing it to not continue
to the rest of the pipe.

• Killing a fragment does not stop
fragment program execution.

• Useful for scissoring and other
effects, but not free!

Fragment Program
Results
Fragment Program
Results

• Results must be explicitly stored for
the fragment to flow down the rest of
the pipe

• Results set in:

result.color;
result.depth;

3939

OpenGL Vertex and Fragment
Program Performance
OpenGL Vertex and Fragment
Program Performance

Program PerformanceProgram Performance

• Lots of variables (literally)
• Length, number of active programs,

instruction types, instruction
ordering, temporaries, etc.

• Note of interest: fixed-function
OpenGL vs programmable evolution.

4040

Instruction
performance
Instruction
performance

• Each instruction has potentially
different performance.
–Some execute in a single clock, others

multiple.
–Some do ‘math’, others do interpolation

(tex lookup) which will have different
perf based on texture state too.

–Good vendor docs can help.

All Instructions aren’t
Created Equal
All Instructions aren’t
Created Equal

0

0.1

0 . 2

0.3

0 . 4

0.5

0 . 6

0.7

0 . 8

0.9

1

4141

Instruction
Performance
Instruction
Performance

• Some instructions are macros and
take up more resources than you
would think.

Example:
One vendor can fit 32 add
instructions in their instruction
buffer, but only 7 sin/cos
instructions

Instruction TipsInstruction Tips

• Code, then optimize
• Aggregate instructions together

(DP3, XPD)
• Break out common pieces, pass in

per-object as ATTRIBS
(glVertexAttrib*ARB())

• Consider texture coords as general
interpolate engines

4242

Instruction TipsInstruction Tips

• Texture is significantly faster

tex
32

.fp

ad
d3
2.f
p

sub
32
.fp

mul3
2.f
p

mad
32
.fp

rcp
32

.fp

rsq
32

.fp

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Instruction Tips:
Texture
Instruction Tips:
Texture

• Texture an order of magnitude faster
on architectures we tested.
–~4x number ALU instructions vs TEX

instructions in a program. Cool! A win,
for now!

• Tip: Embed ‘complex’ math in
textures.

• sin, cos, acos, tan, tables, airspeeds of the
English swallow, whatever.

• Caution: Interpolation & Continuity…

4343

Textures as General
Arrays
Textures as General
Arrays

• Textures can be used as general 1D,
2D, and 3D arrays

• In some cases a table lookup via a
texture can replace a calculation

• Can do dependent lookups

a = x[y[i]];

Texture Coordinates As
General Interpolants
Texture Coordinates As
General Interpolants

• General program data can be stored
in Texture Coordinates per vertex
and interpolated into per fragment
data

• Useful for advanced rendering
algorithms to attach attributes to
fragments

ATTRIB normal = fragment.texcoord[3];
ATTRIB pressure = fragment.texcoord[2];

4444

Program TipsProgram Tips

• Longer programs run slower.

0.001

0.01

0.1

1
1 10 100 1000

Program TipsProgram Tips

• Not all instructions are created equal.
– Some require more internal hardware resources
– Some are dramatically faster
– Swizzling/Masking may affect performance
– Texture performance depends on native texture format

support.
• GL_LINEAR_MIPMAP_LINEAR is going to require more

interpolates than GL_NEAREST_MIPMAP_NEAREST
– No program break.

• KIL doesn’t improve performance

– No branching.
• Conditional emulation computes both branches.

4545

Program PerformanceProgram Performance

• Hard to evaluate performance based on program
contents
– Looks like assembly, but it’s compiled.
– Native instruction set different
– Dead code, instruction reorder, etc.

Other Painful BitsOther Painful Bits

• You get to do a lot of work, if you want to
use this stuff.

• All-or-nothing (lighting, attrib alias, etc)
• Programs can pass stuff down-stream only

- for now.
– Recirculation is coming, via ‘über-buffers’.
– Short version: Render pixel to buffer, then re-

use as vertex array in another pass.

4646

Future ProgrammabilityFuture Programmability

• High-level languages are here
– ARB_(fragment|vertex)_shader

approved!
–C-like language vs today’s assembly-like
– Not widely implemented yet. Wait for it …

• Problem domain is same, level of
code is different.
–Should be easier to write code
–Puts your code farther from the metal

Trends and
Observations
Trends and
Observations

• Everything will change.
• Beginning of lifecycle for hardware

programmability.
• Firm ‘do this’ results hard to provide

because few platforms support full
programmability now.

4747

Trends and
Observations
Trends and
Observations

• Knowing your data is more important
than ever.
–Lots of geometry? Lots of fill? Lots of

App?

• Can then write Vertex & Frag
programs to do the right thing.

Application PerformanceApplication Performance

4848

Review: BottlenecksReview: Bottlenecks

Object

Vertex

Fragment

App

Transform

Fill

DataBottleneck

Balance Workload

Programmable Pipeline
Bottlenecks
Programmable Pipeline
Bottlenecks

CPUObject

GPU - VPVertex

GPU - FPFragment

App

Transform

Fill

HardwareDataBottleneck

4949

Test Fill/Transform
Limited
Test Fill/Transform
Limited

• Never easier
–Vertex Limited?

• Old technique: stub glVertex calls
• New technique: Install stub vertex program

–Fill Limited?
• Old technique: Shrink window
• New technique: Install stub fragment

program

–Else: App/Download Limited

Programmable Pipeline
Performance
Programmable Pipeline
Performance

CPUObject (1)

GPU - VPVertex (100s)

GPU - FPFragment (Nx)

App

Transform

Fill

HardwareDataBottleneck

variable

1x

10x

Ops

5050

Balance Workload - App
Limited
Balance Workload - App
Limited

Object

Vertex

Fragment

1x

100x

10000x

Data Execution Frequency

•Move color computation to
frag.
•Any required generated per-
vertex data.
•Bandwidth limited – could
store vertices on card and
generate other thingies.

• Most modern CPUs have a SIMD
computation engine too (AltiVec, MMX)

Balance Workload - Fill
Limited
Balance Workload - Fill
Limited

Object

Vertex

Fragment

1x

100x

10000x

Data Number Calc

• Replace math with texture lookups.
• Interpolation from vertex program engine

•Pre-light static objects
using CPU, and apply as
color. Maybe do light on
host.

•Move Per-Frag Lighting to
Per-Vertex

5151

Balance Workload -
Transform Limited
Balance Workload -
Transform Limited

Object

Vertex

Fragment

1x

100x

10000x

Data Number Calc

•Move transformations to
host. Pre-transform static
objects, etc.

•Move lighting to fragment
program.

What to Keep in MindWhat to Keep in Mind

• You have full programmatic control
over 3 individual processors.

• You can keep them fully utilized by
moving work among them.

CPU

GPU - VP

GPU - FP

5252

State SortingState Sorting

• State sorting in the way previously
described is still valid, but different

• Use of any individual vertex or
fragment program implies explicit
application binding of:
–Textures
–Complementary program (vert/frag)
–Vertex Attributes
–VBOs, Matrices, Colors, etc.

Example: LightingExample: Lighting

• Lighting is easy in fixed-function.
• More complex in programmable.

– Must implement each light, no simple ‘enable’
– If program doesn’t do calculation, lighting isn’t

applied.
– Can get complex: multiple lights, local, non-

local, tex coords, etc.

• If program only needs a subset of ogl
lighting, a vertex program can execute
faster than fixed-function pipeline.
Generally applicable.

5353

OpenGL Operation, Validations,
and State Sorting
OpenGL Operation, Validations,
and State Sorting

The Novice OpenGL
Programmer’s View of
the World

The Novice OpenGL
Programmer’s View of
the World

Set
State

Render

5454

What Happens When
You Set OpenGL State
What Happens When
You Set OpenGL State

– The amount of work varies by operation

– But all request a validation at next rendering
operation

Transfer and convert data from host
format into internal representation

Transfer “untyped” data
(glTexImage2D())

Set values in OpenGL’s context
Set a “typed” set of data
(glMaterialfv())

Set the feature’s enable flag
Turning on or off a feature
(glEnable())

A (Somewhat) More
Accurate
Representation

A (Somewhat) More
Accurate
Representation

Set
State Render

Validation

5555

ValidationValidation

• OpenGL’s synchronization process
– Validation occurs in the transition from state

setting to rendering

– Not all state changes trigger a validation
• Vertex data (e.g. color, normal, texture coordinates)
• Changing rendering primitive

glMaterial(GL_FRONT, GL_DIFFUSE, blue);
glEnable(GL_LIGHT0);
glBegin(GL_TRIANGLES);

What Happens in a
Validation
What Happens in a
Validation

–Changing state may do more than just
set values in the OpenGL context
• May require reconfiguring the OpenGL

pipeline
– selecting a different rasterization routine
– enabling the lighting machine

• Internal caches may be recomputed
– vertex / viewpoint independent data

5656

The Way it Really Is
(Conceptually)
The Way it Really Is
(Conceptually)

Set
State

Render

Validation

Different
Rendering
Primitive

Why Be Concerned
About Validations?
Why Be Concerned
About Validations?

• Validations can rob performance
from an application
–“Redundant” state and primitive

changes
–Validation is a two-step process

• Determine what data needs to be updated
• Select appropriate rendering routines based

on enabled features

5757

How Can Validations Be
Minimized?
How Can Validations Be
Minimized?
• Be Lazy

– Change state as little as possible
– Try to group primitives by type
– Beware of “under the covers” state changes

• GL_COLOR_MATERIAL
– may force an update to the lighting cache ever call to
glColor*()

How Can Validations Be
Minimized? (cont.)
How Can Validations Be
Minimized? (cont.)
• Beware of glPushAttrib() / glPopAttrib()

– Very convenient for writing libraries
– Saves lots of state when called

• All elements of an attribute groups are copied for later

– Almost guaranteed to do a validation when
calling glPopAttrib()

5858

State SortingState Sorting

• Simple technique … Big payoff
–Arrange rendering sequence to minimize

state changes
–Group primitives based on their state

attributes
–Organize rendering based on the

expense of the operation

State Sorting (cont.)State Sorting (cont.)

Texture Download

Modifying Lighting
Parameters

Matrix Operations

Vertex Data Least Expensive

Most Expensive

5959

State Sorting – Additional
Considerations
State Sorting – Additional
Considerations

• Rendering passes may use more
than one texture
–multi-texturing

• Can’t (arbitrarily) sort on Vertex and
Fragment progams
–Fragment program may use generated

output of a specific vertex program

A Comment on
Encapsulation
A Comment on
Encapsulation

• An Extremely Handy Design
Mechanism, however …
–Encapsulation may affect performance

• Tendency to want to complete all operations
for an object before continuing to next
object

– limits state sorting potential
– may cause unnecessary validations

6060

A Comment on
Encapsulation (cont.)
A Comment on
Encapsulation (cont.)

– Using a “visitor” type pattern can
reduce state changes and validations
• Usually a two-pass operation
�Traverse objects, building a list of rendering

primitives by state and type

�Render by processing lists

• Popular method employed by many scene-
graph packages

Case StudiesCase Studies

6161

Case Study: Application
Description
Case Study: Application
Description

–1.02M Triangles
–507K Vertices
–Vertex Arrays

• Colors
• Normals
• Coordinates

–Color Material

Case Study: What’s the
Problem?
Case Study: What’s the
Problem?

• Low frame rate
–On a machine capable of 13M

polygons/second application was getting
less than 1 frame/second

–Application wasn’t fill limited

second
frames

frame
triangles
second

polygons

12
 M1.02
 M1.13

≈

6262

Case Study: The
Rendering Loop
Case Study: The
Rendering Loop

–Vertex Arrays

– glDrawElements() – index based
rendering

–Color Material
glColorMaterial(GL_FRONT,
GL_AMBIENT_AND_DIFFUSE);

glVertexPointer(GL_VERTEX_POINTER);
glNormalPointer(GL_NORMAL_POINTER);
glColorPointer(GL_COLOR_POINTER);

Case Study: What To
Notice
Case Study: What To
Notice

–Color Material changes two lighting
material components per glColor*()
call

–Not that many colors used in the model
• 18 unique colors, to be exact
• (3 * 1020472 – 18) = 3061398 “redundant”

color calls per frame

6363

Case Study:
Conclusions
Case Study:
Conclusions

• A little state sorting goes a long way
–Sort triangles based on color
–Rewriting the rendering loop slightly

–Frame rate increased to six
frames/second
• 500% performance increase

for (i = 0; i < numColors; ++i) {
glColor3fv(color[i]);
glDrawElements(…, trisForColor[i]);

}

Case Study: Rendering
A Cube
Case Study: Rendering
A Cube

• More than one way to render a cube
–Render 100000 cubes

Render sixRender six
separate quadsseparate quads

Render twoRender two
quads, and onequads, and one

quadquad--stripstrip

6464

Case Study: Method 1Case Study: Method 1

• Once for each cube …

glColor3fv(color);
for (i = 0; i < NUM_CUBE_FACES; ++i) {
glBegin(GL_QUADS);
glVertex3fv(cube[cubeFace[i][0]]);
glVertex3fv(cube[cubeFace[i][1]]);
glVertex3fv(cube[cubeFace[i][2]]);
glVertex3fv(cube[cubeFace[i][3]]);
glEnd();

}

Case Study: Method 2Case Study: Method 2

• Once for each cube …

glColor3fv(color);
glBegin(GL_QUADS);
for (i = 0; i < NUM_CUBE_FACES; ++i) {
glVertex3fv(cube[cubeFace[i][0]]);
glVertex3fv(cube[cubeFace[i][1]]);
glVertex3fv(cube[cubeFace[i][2]]);
glVertex3fv(cube[cubeFace[i][3]]);
}
glEnd();

6565

Case Study: Method 3Case Study: Method 3

glBegin(GL_QUADS);
for (i = 0; i < numCubes; ++i) {

for (i = 0; i < NUM_CUBE_FACES; ++i) {
glVertex3fv(cube[cubeFace[i][0]]);
glVertex3fv(cube[cubeFace[i][1]]);
glVertex3fv(cube[cubeFace[i][2]]);
glVertex3fv(cube[cubeFace[i][3]]);

}
}
glEnd();

Case Study: Method 4Case Study: Method 4

Once for each cube …
glColor3fv(color);

glBegin(GL_QUADS);
glVertex3fv(cube[cubeFace[0][0]]);
glVertex3fv(cube[cubeFace[0][1]]);
glVertex3fv(cube[cubeFace[0][2]]);
glVertex3fv(cube[cubeFace[0][3]]);

glVertex3fv(cube[cubeFace[1][0]]);
glVertex3fv(cube[cubeFace[1][1]]);
glVertex3fv(cube[cubeFace[1][2]]);
glVertex3fv(cube[cubeFace[1][3]]);
glEnd();

glBegin(GL_QUAD_STRIP);
for (i = 2; i < NUM_CUBE_FACES; ++i) {

glVertex3fv(cube[cubeFace[i][0]]);
glVertex3fv(cube[cubeFace[i][1]]);

}
glVertex3fv(cube[cubeFace[2][0]]);
glVertex3fv(cube[cubeFace[2][1]]);
glEnd();

6666

Case Study: Method 5Case Study: Method 5

glBegin(GL_QUADS);
for (i = 0; i < numCubes; ++i) {

Cube& cube = cubes[i];
glColor3fv(color[i]);

glVertex3fv(cube[cubeFace[0][0]]);
glVertex3fv(cube[cubeFace[0][1]]);
glVertex3fv(cube[cubeFace[0][2]]);
glVertex3fv(cube[cubeFace[0][3]]);

glVertex3fv(cube[cubeFace[1][0]]);
glVertex3fv(cube[cubeFace[1][1]]);
glVertex3fv(cube[cubeFace[1][2]]);
glVertex3fv(cube[cubeFace[1][3]]);

}
glEnd();

for (i = 0; i < numCubes; ++i) {
Cube& cube = cubes[i];
glColor3fv(color[i]);

glBegin(GL_QUAD_STRIP);
for (i = 2; i < NUM_CUBE_FACES; ++i){

glVertex3fv(cube[cubeFace[i][0]]);
glVertex3fv(cube[cubeFace[i][1]]);

}
glVertex3fv(cube[cubeFace[2][0]]);
glVertex3fv(cube[cubeFace[2][1]]);
glEnd();

}

Case Study: ResultsCase Study: Results

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Machine 1 Machine 2 Machine 3

Method 1
Method 2
Method 3
Method 4
Method 5

6767

Rendering GeometryRendering Geometry

• OpenGL has four ways to specify
vertex-based geometry
–Immediate mode
–Display lists
–Vertex arrays
– Interleaved vertex arrays

Rendering Geometry
(cont.)
Rendering Geometry
(cont.)

•Not all ways are created equal

0

0.5

1

1.5

2

2.5

3

3.5

Machine 1 Machine 2 Machine 3

Immediate

Display List

Array Element

Draw Array

Draw Elements

Interleaved Array Element

Interleaved Draw Array

Interleaved Draw Elements

6868

Rendering Geometry
(cont.)
Rendering Geometry
(cont.)

• Add lighting and color material to the
mix

0

1

2

3

4

5

6

Machine 1 Machine 2 Machine 3

Immediate

Display List

Array Element

Draw Array

Draw Elements

Interleaved Array Element

Interleaved Draw Array

Interleaved Draw Elements

OpenGL’s Advanced
Geometry Storage
OpenGL’s Advanced
Geometry Storage

6969

Triangle and Quad
Strips
Triangle and Quad
Strips

• Often many triangles or quads share
vertices
–E.g. tessellation of a grid

–When vertices are shared, use
GL_TRIANGLE_STRIP or GL_QUAD_STRIP
if possible

Triangle and Quad
Strips
Triangle and Quad
Strips

• GL_TRIANGLES draws n triangles for
3 * n vertices

• GL_TRIANGLE_STRIP draws n
triangles for n + 2 vertices
–Can improve performance substantially

12 triangles drawn, only 14 vertices transformed

0
2

1

4

3

6

5 7
9

8
10

11

12

0

13

7070

Triangle and Quad
Strips
Triangle and Quad
Strips

• GL_QUAD_STRIP draws n quads for
2*n + 2 vertices
–(Often turned into triangle strip

anyway)

6 quads drawn, only 14 vertices transformed

0
2

1

4

3

6

5 7
9

8
10

11

12

0

13

Vertex Caching -
Indexed Primitives
Vertex Caching -
Indexed Primitives

• Many current devices have a “vertex”
or “geometry” cache
–Most recently transformed vertices are

kept in a small (10-16 element) cache

• Use indexed primitives to take
advantage of the cache
– glDrawElements()

• Use indexed triangle strips for
hardware with or without vertex
cache

7171

Vertex Caching -
Indexed Primitives
Vertex Caching -
Indexed Primitives

0

4

1

6

5

2

8
7

3

Strips:
0 3 1 4 2 5
3 6 4 7 5 8

Actually transformed:
0 3 1 4 2 5 6 7 8

Vertices transformed
per triangle:

1.125
(vs. 1.5 in a strip)

Assuming one row can fit in cache

Vertex Caching -
Indexed Primitives
Vertex Caching -
Indexed Primitives

Triangles:
96

Vertices transformed:
63

Vertices transformed
per Triangle:

.657.657
(vs. 1.16 for strip)

6 cells

8
cells

7272

Vertex Caching -
Indexed Primitives
Vertex Caching -
Indexed Primitives

Inside the mesh:

Each new vertex
enables two new
triangles!

Cyan vertices
already in cache

Black vertex enables
both green triangles

Vertex Buffer ObjectsVertex Buffer Objects

• Bus limitation is more and more an
issue ...

• Put vertex and index data in graphics
memory for best performance!

• New GL_ARB_vertex_buffer_object
extension

• Uses existing vertex array API
–But a current buffer is accessed and app

provides offsets instead of pointers

7373

Vertex Buffer ObjectsVertex Buffer Objects

• Vertex buffer API is similar to
textures:
– glGenBuffersARB(bufCount, buffers);
– glBindBufferARB(target, buffer);
– glDeleteBuffersARB(bufCount, buffers);

• Target for binding is either:
– GL_ARRAY_BUFFER_ARB for vertex data
– GL_ELEMENT_ARRAY_BUFFER_ARB for index

data

Vertex Buffer ObjectsVertex Buffer Objects

• Can load new data or replace range
of data:
– glBufferDataARB(target, byteCount,
srcData, usage);

– glBufferSubDataARB(target, byteOffset,
byteCount, srcData);

• Whole series of “usage” enumerants
– GL_STATIC_DRAW_ARB written once, never read

– GL_DYNAMIC_DRAW_ARB written repeatedly

– Among others...

7474

Vertex Buffer ObjectsVertex Buffer Objects

• Can map buffer data into memory for
access
– glMapBufferARB(target, accessPattern);
– glUnmapBufferARB(target);

• Access pattern indicates intention
– GL_READ_ONLY_ARB App won’t change
– GL_WRITE_ONLY_ARB App won’t read
– GL_READ_WRITE_ARB …

–OpenGL doesn’t enforce with errors, but
deviating from intention may be slow

Vertex Buffer ObjectsVertex Buffer Objects

• Example vertex buffer setup:

• Then call glDrawArrays in draw func

#define OFFSET(a) ((char *)NULL + a)
glGenBuffersARB(1, &vbuffer);
glBindBufferARB(GL_ARRAY_BUFFER_ARB,

vbuffer);
glBufferDataARB(GL_ARRAY_BUFFER_ARB,

sizeof(vert) * numverts, vertData,
GL_STATIC_DRAW_ARB);

glInterleavedArrays(GL_N3F_V3F,
sizeof(vert), OFFSET(offset));

7575

Vertex Buffer ObjectsVertex Buffer Objects

• Can also set up element array:

• Then call glDrawElements in draw:
glDrawElements(GL_TRIANGLES, indexCount,
GL_UNSIGNED_INT, OFFSET(offset));

/* set up vertices… */
glGenBuffersARB(1, &ebuffer);
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB,

ebuffer);
glBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB,

sizeof(unsigned int) * numIndices,
indexData, GL_STATIC_DRAW_ARB);

Vertex Buffer ObjectsVertex Buffer Objects

• DrawElements is somewhat
expensive

• So draw more tris per DrawElements

0

0.5

1

1 4 16 64 256 1024

Machine 1
Machine 2

Performance

Triangles per DrawElements

7676

Vertex Buffer ObjectsVertex Buffer Objects
• Connect strips with empty triangles to

reduce overhead (func call
turnaround much higher than 0-pixel
triangle overhead)

4

6

5

8
7

3

Strip:
0 3 1 4 2 5 5 3 3 6 4 7 5 8

0

4
5

1

3

2

4

6 8
7

3

Vertex Buffer ObjectsVertex Buffer Objects

• Setting up VBO and array is more
expensive

• So glBindBufferARB() only when
necessary

0

0.5

1

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

Machine 1
Machine 2

Performance

Triangles per VBO Setup

7777

Indexed Primitives
and Vertex Buffers
Indexed Primitives
and Vertex Buffers

ARB_vertex_buffer_object

glDrawArrays(GL_TRIANGLES,
...);

194400 Vertices:
4.66MB (V3F_N3F)

20 Million Triangles per Second

180 cells

180
cells

Indexed Primitives
and Vertex Buffers
Indexed Primitives
and Vertex Buffers

ARB_vertex_buffer_object

glDrawArrays(
GL_TRIANGLE_STRIP,
...)

65160 vertices:
1.56MB (V3F_N3F)

55 Million Triangles per Second

Performance Increase :
2.25x

180 cells

180
cells

strip 0
strip 1
strip 2

7878

Indexed Primitives
and Vertex Buffers
Indexed Primitives
and Vertex Buffers

ARB_vertex_buffer_object

glDrawElements(
GL_TRIANGLE_STRIP,
...

32761 vertices:
786 KB (V3F_N3F)

75600 indices:
302K

Total 1.09MB

98 Million Tris per Second

Performance increase :
4.9x

180 cells

180
cells

strip 0
strip 1
strip 2

strip 180
strip 181
strip 182

Another Possibility:
Occlusion Query
Another Possibility:
Occlusion Query

• NV_occlusion_query now,
ARB_occlusion_query soon, core
OpenGL 1.5 after that

• Ask OpenGL how many pixels
covered by sequence of commands
–Draw a simple representation (“proxy”)

without color and depth update
• Disable lighting, texturing, etc

–If the proxy drew zero pixels, don’t
bother drawing the real thing

7979

One More Possibility:
Occlusion Query
One More Possibility:
Occlusion Query

• Proxy geometry
–Reasonably tight bounding volume
–No texturing, no shading
–No lighting, no glTexGen()
–No colors, tex coords, normals

• Trading off a little fill and transform
for potential reduction of a lot of fill
and transform

Occlusion QueryOcclusion Query

• Occlusion Query
–First, generate queries at initialization

time
–Like Textures or Display Lists
– glGenOcclusionQueriesNV(int count,

unsigned int queryIDs[]);

8080

Occlusion QueryOcclusion Query

• Occlusion Query
–Render a bunch of stuff (big occluders)
–Then start queries for a bunch more

stuff
glBeginOcclusionQueryNV(int querynum);
/* draw proxy geometry... */
glEndOcclusionQueryNV();

–Then read results of queries
•glGetOcclusionQuery{iv,uiv}NV(

int querynum, GL_PIXEL_COUNT_NV,
int *samplesCounted);

Occlusion QueryOcclusion Query

• But getting query result is
synchronous, so issue a batch of
queries, then read results for batch

0

0.5

1

Queries per
Second

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

Number in BatchMachine 1
Machine 2

8181

Occlusion QueryOcclusion Query

Sort objects front-back into batches
For each batch

For each object in batch
BeginQuery
Draw proxy
EndQuery

For each object in batch
GetQuery
if(samples > 0)

Draw object

Occlusion QueryOcclusion Query

Without occlusion
query: 15 fps

With occlusion
query: 25 fps

10% batching

8282

Occlusion QueryOcclusion Query

Occluded objects

drawn in red
Scene from the

side

Case Study: TerrainCase Study: Terrain

• 4001x4801 Height Field
• Drawn at 1/256th resolution

– 75,000 GL_TRIANGLES

• All data generated
per frame
– Vertices
– Colors
– Normals

• Color Material
• 10 frames / sec

8383

Case Study: TerrainCase Study: Terrain
const GLfloat color0[3] = { 0.65, 0.40, 0.10 };
const GLfloat color1[3] = { 0.60, 0.50, 0.15 };
const GLfloat color2[3] = { 0.65, 0.55, 0.25 };
const GLfloat color3[3] = { 0.70, 0.55, 0.25 };
const GLfloat color4[3] = { 0.70, 0.75, 0.30 };
const GLfloat color5[3] = { 0.60, 0.75, 0.30 };
const GLfloat color6[3] = { 0.50, 0.80, 0.30 };
const GLfloat color7[3] = { 0.40, 0.85, 0.35 };
const GLfloat color8[3] = { 0.30, 0.85, 0.45 };
const GLfloat color9[3] = { 0.80, 0.80, 0.80 };
const GLfloat color10[3] = { 1.00, 1.00, 1.00 };

if (elev < 0.0) glColor3fv (color0);
else if (elev < 304.8) glColor3fv (color1);
else if (elev < 609.6) glColor3fv (color2);
else if (elev < 914.4) glColor3fv (color3);
else if (elev < 1219.2) glColor3fv (color4);
else if (elev < 1524.0) glColor3fv (color5);
else if (elev < 1828.8) glColor3fv (color6);
else if (elev < 2133.6) glColor3fv (color7);
else if (elev < 2438.4) glColor3fv (color8);
else if (elev < 2743.2) glColor3fv (color9);
else glColor3fv (color10);

Case Study: TerrainCase Study: Terrain

• Techniques Used:
– Pre-compute values

• (downside is memory footprint)

– Break terrain data into tiles
– Use Vertex Buffer Object – let system load

geometry on demand
– Use glTexGen() for color
– Use indexed GL_TRIANGLE_STRIPs for vertex-

cache friendliness
– Use occlusion query for easy frustum cull

8484

Case Study: TerrainCase Study: Terrain

• Results:
–1/5 resolution

• 2000 x 2000
• 50x improvement

–Typically > 10 Hz
• 3 Hz - 60 Hz

depending on
viewpoint

–Per-pixel height
colormap

Conclusions and Future WorkConclusions and Future Work

8585

SummarySummary

• Know the answer before you start
–Understand rendering requirements of

your applications
• Have a performance goal

–Utilize applicable benchmarks
• Estimate what the hardware’s capable of

–Organize rendering to minimize OpenGL
validations and other work

Summary (cont.)Summary (cont.)

• Pre-process data
–Convert images and textures into

formats which don’t require pixel
conversions

–Pre-size textures
• Simultaneously fit into texture memory
• Mipmaps

–Determine what’s the best format for
sending data to the pipe

8686

Questions & AnswersQuestions & Answers

• Thanks for coming
–Updates to notes and slides will be

available at
http://www.PerformanceOpenGL.com/

–Feel free to email if you have questions

Dave ShreinerDave Shreiner Alan Alan CommikeCommike
shreiner@sgi.com commike@sgi.com

Brad GranthamBrad Grantham Bob Bob KuehneKuehne
grantham@sgi.com rpk@sgi.com

ReferencesReferences

–OpenGL Programming Guide, 3rd Edition
Woo, Mason et. al., Addison Wesley

–OpenGL Reference Manual, 3rd Edition
OpenGL Architecture Review Board,
Addison Wesley

–OpenGL Specification, Version 1.2.1
OpenGL Architecture Review Board

8787

AcknowledgementsAcknowledgements

• A Big Thank You to …
–SGI
–Peter Shaheen for a number of the

benchmark programs
–David Shirley and Frank Merica for the

Case Study applications
–3DLabs for lending us hardware

Questions?Questions?

Thanks for Coming!

